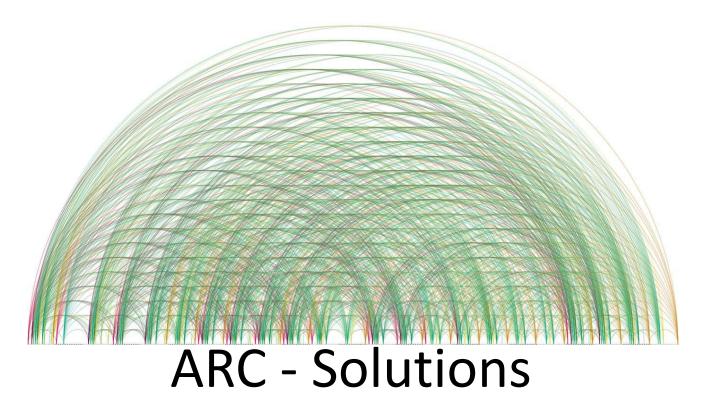
WELCOME: ARC WILDLIFE CROSSING SOLUTIONS

Technology Presentation

Lakewood, CO June 1, 2012

Federal Highway Administration



Roger W. Surdahl, P.E. Technology Delivery Engineer FHWA – CFLHD

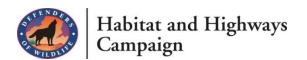
ARC WILDLIFE CROSSING SOLUTIONS: PRESENTER

Rob Ament
Road Ecology Program Manager
Montana State University
Western Transportation Institute

GOAL: Ensuring safe passage for both humans and animals on and across our roads.

We do this through supporting the study, design and construction of wildlife crossing structures throughout North America.

INCREDIBLE PARTNERS & SUPPORT

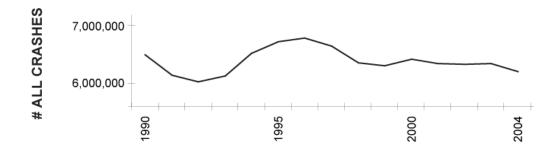


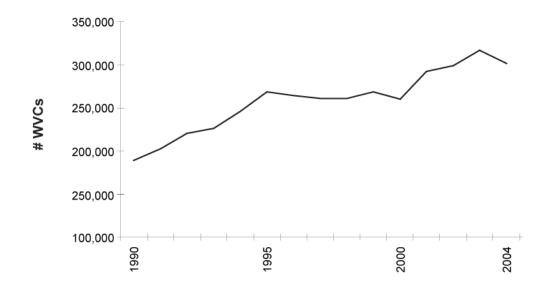
WILDLIFE CROSSINGS WHY TAKE ACTION?

- Improve motorist safety
- Reduce collision costs
- Reduce wildlife mortality
- Conserve T and E species
- Improve wildlife population survival
- Address mass mortality
- Loss or suffering of wildlife
- Promote habitat connectivity

WVCs: International Issue (Transportation Safety)

	US	Canada	Europe
Animal-vehicle- Collisions	1-2 million (deer)	± 28,000	507.000 (ungulates)
Human injuries	29.000	1,565	30.000
Human fatalities	211	18	300
Property damage	> 8 billion US\$	200 million CAN\$	> 1 billion US\$


Conover et al., 1995; Cook & Daggett, 1995; Groot Bruinderink & Hazebroek, 1996'; L-P Tardiff & Associates Inc. 2003; Huijser et al. 2008

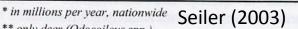

per year

.... and increasing

U.S. trend: animal-vehicle collisions

1-2 million ungulate-vehicle collisions / year in US (Huijser et al. 2008)

AVCs: P < 0.001, $R^2 = 0.89$ GES (General Estimates System Sub-sample for every US state) Huijser et al., 2008



Species and Numbers A Conservation Issue

Table 1. Estimates of annual nationwide road kills in wildlife, as obtained from field inventories or drivers enquiries.

Species	Road kills *	Country	Year/Period	Reference
vertebrates	365	USA	1960's	Humane Society 1960, in Lalo 1987
	100	ES	1990's	Caletrio et al. 1996
	6.5	FI	2002	Manneri 2002
प्रमान प्रमाणि एवं प्र	4.0	BE	1994	Rodts et al. 1998
birds	8.5	SE	1998	Svensson 1998
	5.0	BL	1983	Mankinov & Todorov 1983
	4.0	UK	1966	Hodson 1966
	3.7	DK	1981	Hansen 1982
	2.5	UK	1965	Hodson & Snow 1965
santa limitada nalise beliana taman ila ko n	2.0	NL	1993	Tempel 1993
	1.0	SE	1970's	Göransson et al. 1978
	0.6	NL	1977	Jonkers & De Vries 1977
birds & mammals	2.0	CAN	1970's	Oxley & fenton 1976
large & medium sized mammals	1.5	DK	1980	Hansen 1982
	0.5	SE	1970's	Göransson et al. 1979
	0.2	NL	1977	Jonkers & De Vries 1978
amphibians	5.0	AUS	1983	Ehmann & Cogger 1983, in Bennett 199
alite ib	3.0	DK	1982	Hansen 1982
ungulates	0.5	USA **	1991	Romin & Bissonette 1996
	0.5	EU	1995	Groot-Bruinderink & Hazebroek 1996
	0.004	F	1990's	SETRA 1998
	0.002	ES	1992	Fernandez 1993

^{**} only deer (Odocoileus spp.)

Federally Listed T&E Species

Species Group	Species Name	
Amphibians	California tiger salamander (Ambystoma californiense), C. CA, S. Barb., Son. county	
Amphibians	Flatwoods salamander (Ambystoma cingulatum)	
Amphibians	Houston toad (Bufo houstonensis)	
Reptiles	American crocodile (Crocodylus acutus)	
Reptiles	Desert tortoise (Gopherus agassizii), except in Sonoran Desert	
Reptiles	Gopher tortoise (Gopherus polyphemus), W of Mobile/Tombigbee Rs.	
Reptiles	Alabama red-bellied turtle (Pseudemys alabamensis)	
Reptiles	Bog turtle (Muhlenberg) northern population (Clemmys muhlenbergii)	
Reptiles	Copperbelly water snake (Nerodia erythrogaster neglecta)	

Species Group	Species Name
Reptiles	Eastern indigo snake, eastern indigo (Drymarchon corais couperi)
Birds	Audubon's crested caracara (Polyborus plancus audubonii), FL pop.
Birds	Hawaiian goose (Branta sandvicensis)
Birds	Florida scrub jay (Aphelocoma coerulescens)
Mammals	Lower Keys marsh rabbit, (Sylvilagus palustris hefneri)
Mammals	Key deer (Odocoileus virginianus clavium)
Mammals	Bighorn Sheep, Peninsular CA pop. (Ovis canadensis)
Mammals	San Joaquin kit fox (Vulpes macrotis mutica)
Mammals	Canada lynx (Lynx canadensis), lower 48 states
Mammals	Ocelot (Leopardus pardalis)
Mammals	Florida panther (Felis concolor coryi)
Mammals	Red wolf (Canis rufus), except where XN

North America: costs of collisions

Description	Deer	Elk	Moose
Vehicle repair costs per collision	\$2,622	\$4,550	\$5,600
Human injuries per collision	\$2,702	\$5,403	\$10,807
Human fatalities per collision	\$1,002	\$6,683	\$13,366
Towing, accident attendance and investigation	\$125	\$375	\$500
Hunting value animal per collision	\$116	\$397	\$387
Carcass removal and disposal per collision	\$50	\$75	\$100
Total	\$6,617	\$17,483	\$30,760

Huijser et al. 2009, Ecology and Society

Effective Measures

Mitigation measure	Effect- iveness	Source
Seasonal wildlife warning sign	26%	Sullivan et al. (2004): 51%; Rogers (2004): 0%
Vegetation removal	38%	Jaren et al. (1991): 56%; Lavsund and Sandegren (1991): 20%
Fence, gap, crosswalk	40%	Lehnert and Bissonette (1997): 42%, 37%
Population culling	50%	Review in Huijser et al. 2007a
Relocation	50%	Review in Huijser et al. 2007a
Anti-fertility treatment	50%	Review in Huijser et al. 2007a
Fence (incl. dig barrier)	86%	Reed et al. (1982) 79%; Ward (1982): 90% Woods (1990): 94-97%; Clevenger et al. (2001): 80%; Dodd et al. (2007): 87%
Fence, underpass	86%	Reed et al. (1982) 79%; Ward (1982): 90% Woods (1990): 94-97%; Clevenger et al. (2001): 80%; Dodd et al. (2007): 87%
Fence, under- and overpass	86%	Reed et al. (1982) 79%; Ward (1982): 90% Woods (1990): 94-97%; Clevenger et al. (2001): 80%; Dodd et al. (2007): 87%
Animal detection system (ADS)	87%	Mosler-Berger and Romer (2003): 82%; Dodd and Gagnon (2008): 91%
Fence, gap, ADS	87%	Mosler-Berger and Romer (2003): 82%; Dodd and Gagnon (2008): 91%
Elevated roadway	100%	Review in Huijser et al. 2007a
Road tunnel	100%	Review in Huijser et al. 2007a

PROVEN


EXPERIMENTAL

EXPENSIVE

Fences in combination with crossing structures

DESIGN*

Overpass Design:

- 1 Landscape bridge
- 2 Wildlife overpass
- 3 Multi-use overpass
- 4 Canopy crossing

Underpass Design:

- 5 Viaduct/Flyover
- 6 Large mammal underpass
- 7 Multi-use underpass

- 8 Underpass with waterflow
- 9 Small/Medium-size mammal underpass
- 10 Modified culvert design
- 11 Herp tunnel

*Guidelines for designing and evaluating North American wildlife crossing systems, Clevenger et al. 2009

Wildlife Crossings, Eco-ducts, Fauna Passages A Brief History

- 1950s First wildlife crossings in Europe and USA
- 1960s France: First wildlife overpasses; Hunters involved
- 1970s 1st Overpasses in North America (UT, NJ)
- 1980s 1st Wildlife Crossings in Banff National Park
- 1990s Florida I-75 Alligator Alley, 1st large-scale works
 1st Overpass in Canada (Coquihalla Highway, BC)
 1st Overpasses in Banff National Park (phase 3A)

*From a history of road ecology (Forman et al. 2003)

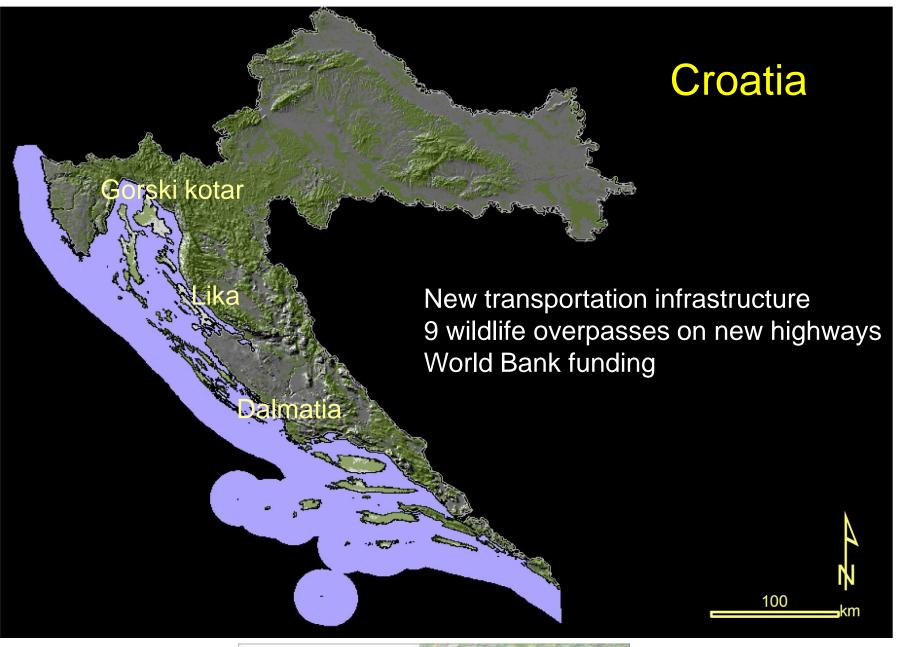
Present state of wildlife crossing integration with transportation networks

On all major continents

Most active: Europe, North America, Australia Increasing activity: Asia, India, Latin America

European wildlife overpasses

A sampler

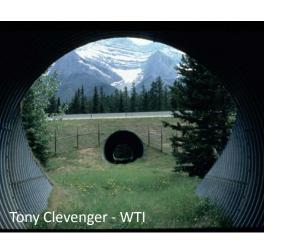


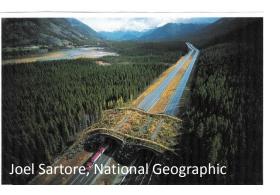
Topside View of Overpass in Holland

Spain

Landscape: Agricultural/riparian mix Wolves, roe deer, wild boar

Paso superior, Autovia de Matilla Arzon (Zamora), España




Current North American wildlife crossings

Wildlife underpasses - over 500

```
Wildlife overpasses - 13
      British Columbia (1)
      Alberta (4)
      Utah (1)
      New Jersey (2)
      Florida (1)
      Montana (1)
      Nevada (1)
      Wyoming (2)
More in planning stages
      Washington (2)
      Alberta (2)
```

LESSONS FROM BANFF NATIONAL PARK

Use of Crossing Structures

Banff National Park, Albert (Nov '96 to Oct '08)

185,683 detections, 12 large mammal species, 28 crossing structures

Ungulates

Deer 127,553

Elk 37,772

Moose 144

Bighorn sheep 4,592

Clevenger et al., 2009

Carnivores

Black bear 1,191

Grizzly bear 679

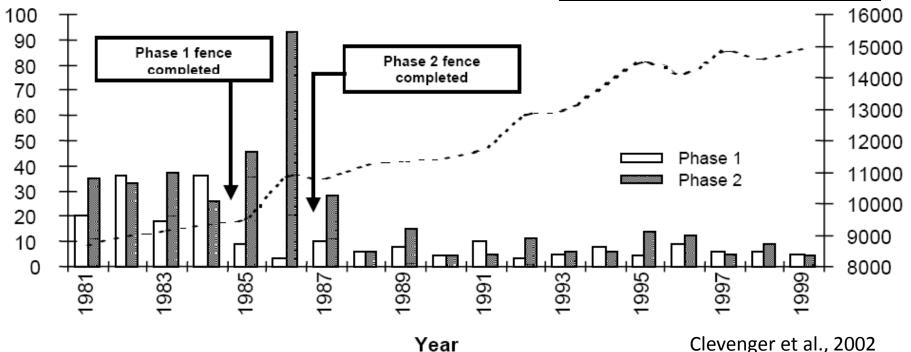
Bear ssp. 24

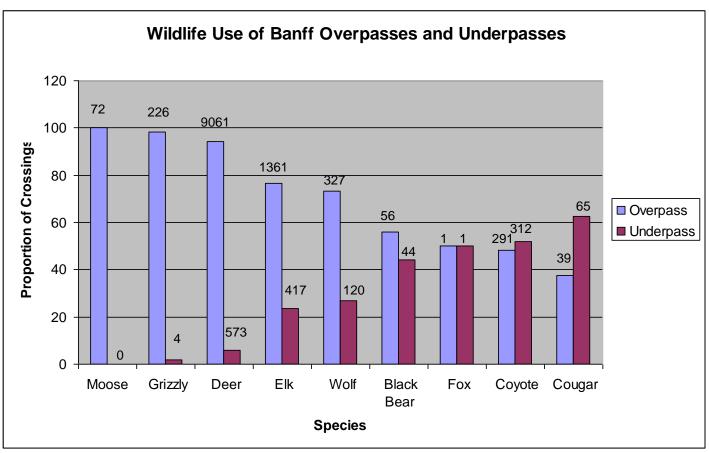
Wolf 5,113

Coyote 7,202

Cougar 1,405

Lynx 4


Wolverine 4


Wildlife-Vehicle Collision Reduction

86% reduction (79-99%)

Differential Use of Crossing Type

Pair-wise comparison of Wolverine Overpass/Underpass and Red Earth Overpass/Underpass

INTERESTING INTERACTIONS

Wolf v. Elk (underpass)

Photos: WTI Research Cameras

Sparring Grizzlies (overpass)

Banff TransCanada Highway Wildlife Mitigation

Costs as proportion of expansion project:

TCH phase 1 & 2 (1986) - 15% TCH phase 3A (1997) - 25-30% TCH phase 3B (2008) - 40-45%

Costs of Wildlife Crossing Mitigation?

1997 and **2008** figures

Wildlife overpass, 50-m wide* = \$C 2.5 - 3 M Wildlife overpass, 60-m wide* = \$C 9 M

Wildlife underpass, $4 \times 12 \text{ m}^* = \$\text{C } 750,000$ Wildlife underpass, $5.5 \times 24 \text{ m}^* = \$\text{C } 6 \text{ M}$

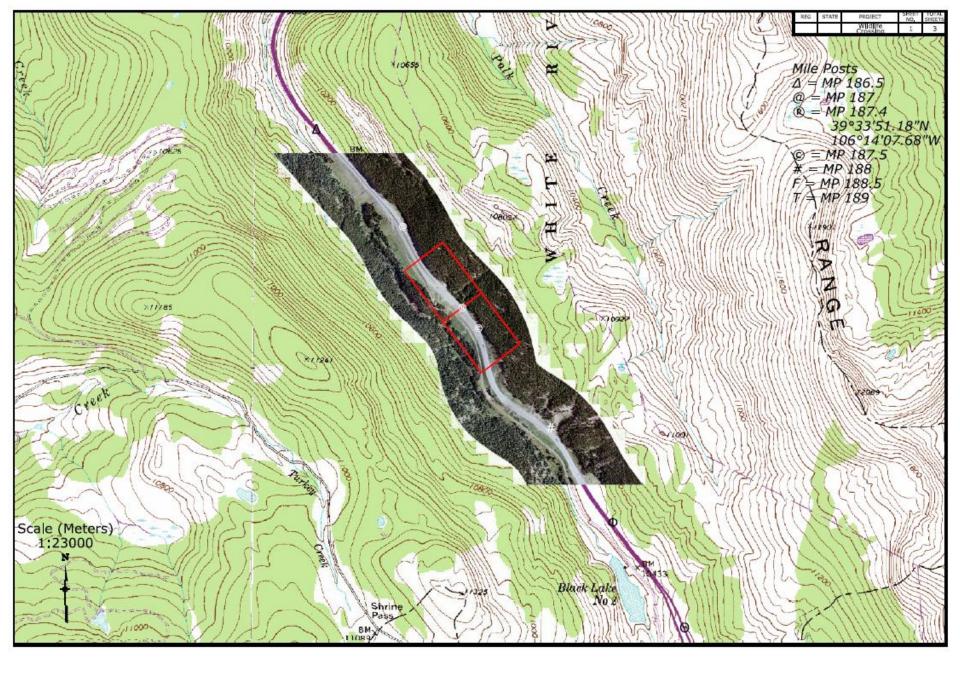
Wildlife underpass, $4 \times 7 \text{ m}^* = \$\text{C} 500,000$ Wildlife underpass, $4 \times 7 \text{ m}^* = \$\text{C} 1.5 \text{ M}$

Wildlife underpass, box culvert* = \$C 250,000 Wildlife underpass, box culvert* = \$C 1.2 M

Fencing, wood posts w/apron = \$C 35 per metre Fencing, wood posts w/apron = \$C 110 per metre *Span 4-lanes with 32 m median.

ARC DESIGN COMPETITION: The Rationale

WCs proven effective in reducing WVCs WVCs increasing significantly across NA WCs passing many types of species Overpasses may support different species WCs becoming increasingly expensive Europe developing more diverse overpass designs Context Sensitive, Green Highways, Climate Change


DESIGN COMPETITION

Objective: a real-time, in-situ application

Site competition: sent notice out to various networks (AASHTO, Transwild, WFT Listserve, etc.) regarding interest in potential sites

- •22 locations were nominated/suggested across North America
- •Nominations reviewed by ARC Technical Advisory Committee
- ARC Steering Team selected Vail Pass
- Worked with CDOT and signed MOU

Phases & Stats

Phase 1 - Call for Expressions of Interest

100 firms

9 countries

36 teams

qualifications and design approaches

Phase 2 – Invited

5 finalist teams

model, panels & booklet

Partnership among disciplines

Engineering

Ecology

Architecture

Landscape Architecture

Wildlife Biology

Transportation

Landscape Design

Graphic Design

Jury

Prof. Charles Waldheim (Jury Chair), John E. Irving Professor and Chair of Landscape Architecture, Harvard University, Graduate School of Design

Jane Wernick, Structural Engineer and Director of Jane Wernick Associates, London.

William L. Withuhn, Curator Emeritus, History of Technology and Transportation, Smithsonian Institution

Prof. Jane Wolff, Associate Professor and Chair of Landscape Architecture, John H. Daniels Faculty of Landscape, Architecture and Design, University of Toronto

Dr. Anthony Clevenger, Senior Research Scientist (Road Ecology), Western Transportation Institute, Montana State University

Finalist teams

Balmori Associates (New York)

with StudioMDA, Knippers Helbig Inc., David Skelly, CITA, Bluegreen, John A. Martin & Associates, & David Langdon

HNTB with Michael Van Valkenburgh & Assoc. (New York) with Applied Ecological Services, Inc.

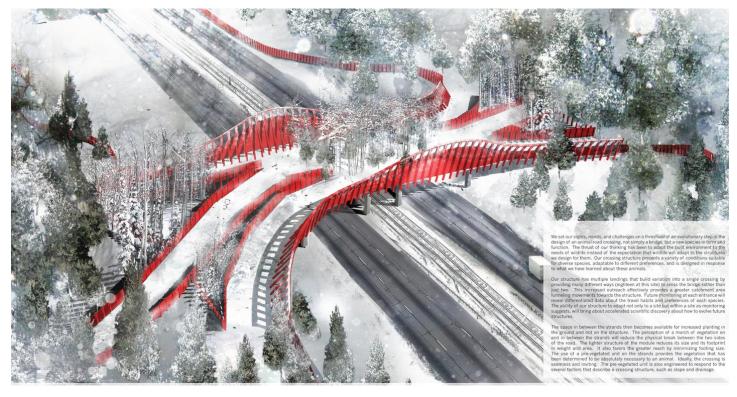
Janet Rosenberg & Associates (Toronto)

with Blackwell Bowick Partnership, Dougan & Associates, & Ecokare International

The Olin Studio (Philadelphia)

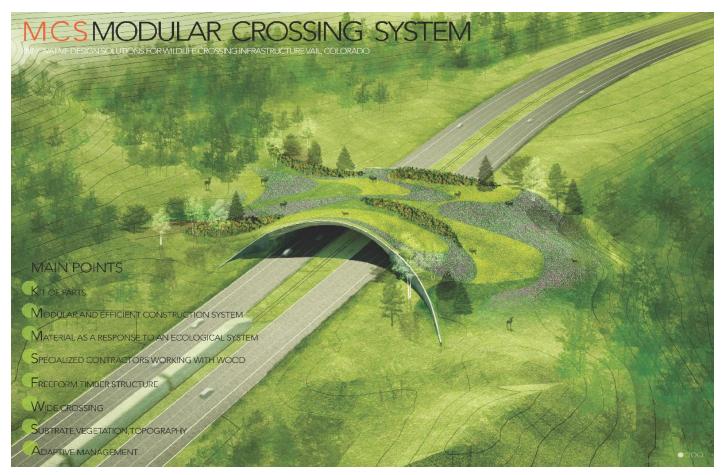
with Explorations Architecture, Buro Happold, & Applied Ecological Services

Zwarts & Jansma Architects (Amsterdam)


with OKRA Landscape Architects, IV-infra, & Planecologie

Olin Studios (Philadelphia) with Explorations Architecture (Paris), Buro Happold (London) and Applied Ecological Services.

OLIN Team panels Girard/ARC



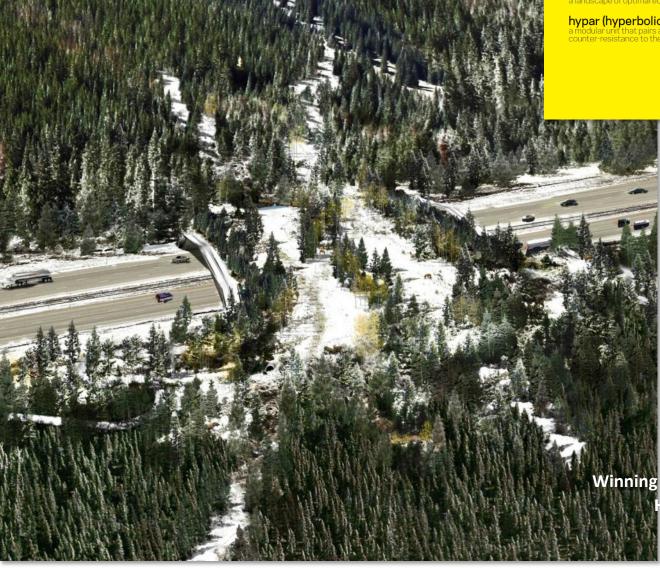
Janet Rosenberg & Associates (Toronto) with Blackwell Bowick Partnership, Dougan & Associates, and Ecokare

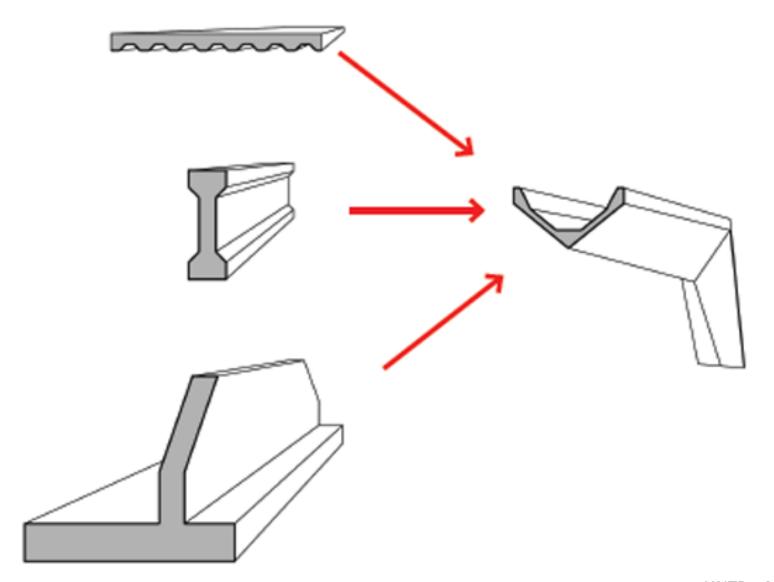
Rosenberg Team 3-D model

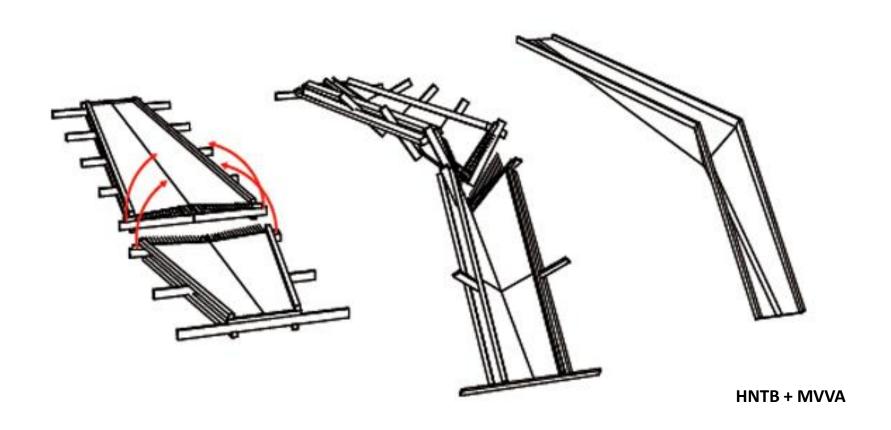
Balmori Associates (New York) with StudioMDA, Knippers Helbig Inc., David Skelly, CITA, Bluegreen, John A. Martin & Associates, and David Langdon

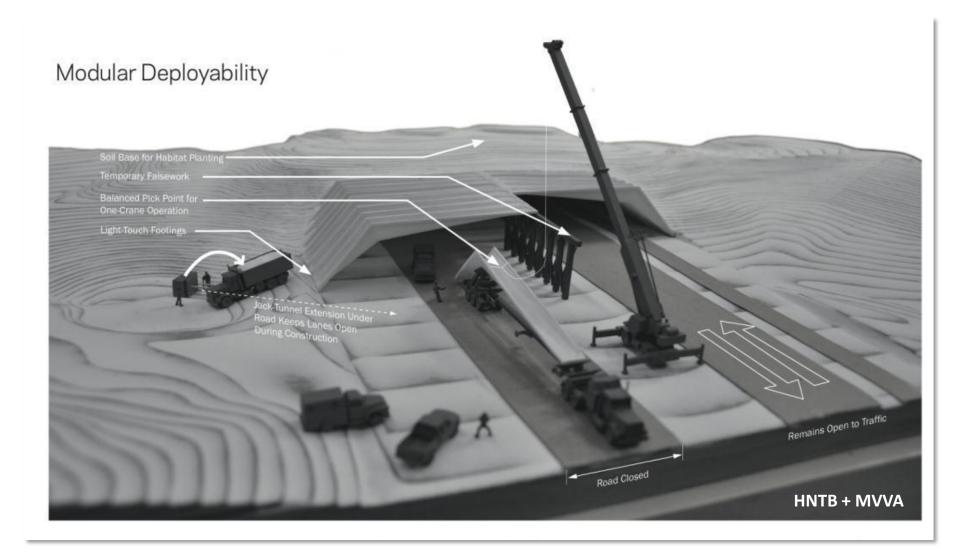
Zwarts & Jansma Architects (Amsterdam) with OKRA Landscape Architects, IV-infra and Planecologie

Jury assessment:


"the winning proposal by HNTB Engineering with Michael Van Valkenburgh & Associates was not only eminently possible; it has the capacity to transform what we think of as possible."




hypar (hyperbolic parabaloid) vault: \hī-pär volt\
a modular unit that pairs a doubly-curved surface with a form that depends on a counter-resistance to the exertion of lateral thrust


HNTB + MVVA TEAM

Crux of Hypar-nature

National

The New Hork Times

MONDAY, JANUARY 24, 2011 THE WALL STREET JOURNAL.

J.S. Edition Home • | Today's Pag

U.S.

Vorid

New York

here a Highway Crosses Wildlife's Path, Designers Compete to Avert Collisions competition, which bestows a \$40,000

By MATTHEW L. WALD

HINGTON — At a picturesque the mountains near the ski reof Vail and Breckenridge, Colo., reams of traffic converge; peoiving east and west on Interstate d animals - black bears, coubobcats, elk and deer — headed

and south to feed and mate. they collide, the animal is alalways killed and the vehicle damaged, even if the driver is enough to escape injury.

e obvious solution is a bridge or a el for the animals, but how do you one they will use?

a Sunday, a nonprofit group annced the winner of a competition design such a crossing: Michael Valkenburgh & Associates, a landpe architecture firm with offices in w York City and Cambridge, Mass. e design team, associated with the tional construction firm HNTB, subtted a proposal for a bridge made of htweight precast concrete panels at are snapped into place and coved with foliage.

The bridge is broad enough to allow r strips - lanes, actually - that reemble forests, shrubs and meadows ith the aim of satisfying the tastes o

any of the animals in the area. Miles of fences on either side of the highway would funnel animals to the bridge.

The state has not committed to build such a structure at that spot. The percentage of crashes caused by animals is far

cey St

anie

- in other areas, said Sta-DENVER AND THE WEST

More broadly, the highway forms a threatening barrier between nature preserves on either side, increasing the likelihood that the populations will

long-term prognosis for wildlife bad," said Rob Ament, the proje manager for the group sponsoring

" and was initiated by the West-*weritute at Mon-

THE GLOBE AND MAIL

Home

Movies

News Commentary Business Television

Theatre

Music

Design selected for I-70 wild crossing near Vail By Jessica Fender

The Denver Post

POSTED: 01/24/2011 01:00:00 AM MST UPDATED: 01/24/2011 08:46:26 AM MST

Calling it a potential "model for the world," a page engineers Sunday picked a New V crossing over 1-1

Home » News » Arts » Lisa Rochon

LISA ROC Acro

LISA ROCE From Satu

Published I Last update

Wildlife bridge contest: Winning West Vail Pass entry "elegant" yet practical

By Alan Prendergast, Mon., Jan. 24 2011 @ 2:50PM Categories: Fashion & Design, Follow That Story, Video

A New York team has won a unique international competit design a special bridge for wildlife crossing I-70 west of V: Pass, the first structure of its kind ever proposed for the U States. The winners, HNTB with Michael Van Valkenburg the home a prize of \$40,000. Whether t

CALGARY HERALD

Banff bridges leading to new ideas

Increasing numbers of animal-vehicle collisions on high

Winning ARC entry by HNTB + MVVA

www.arc-solutions.org

QUESTIONS?