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Executive Summary 

Deer-vehicle collision (DVC) has been one of the top traffic accidents in North America and 
Europe for decades. Many researchers have been dedicated to reduce these occurrences, but 
limited success has been achieved due to various reasons, such as bad weather, low visibility, 
and huge computational and equipment cost.  

To reduce the deer-vehicle collisions, this work developed a deer-detection system using the 
contour based histogram of oriented gradients algorithm (CNT-HOG) to identify deer through 
the processing of thermographic images. 

The system has the capability of detecting deer in low visibility, such as lack of light, and in 
foggy, rainy, or snowy weather conditions. It is equipped with two motors, which enlarged the 
detection range and made the system capable of tracking a detected deer by providing two 
degrees of freedom. 

In the CNT-HOG algorithm, HOG descriptors were employed to describe the common feature of 
targeted objects. The main assumption in the CNT-HOG algorithm was that the temperature of a 
deer is higher than the environment’s such that the deer is inside a bright area in the 
thermographic images. The portion of the images formed by the brighter areas is called region of 
interest (ROI). The regions of interest were identified based on the contours of brighter areas. 
Then in the ROI, the HOG feature was collected and a detection framework was applied to the 
image portions in the ROI instead of the whole image. In the detection framework, a Linear 
Support Vector Machine classifier was applied to achieve identification. 

The system has been tested in various scenarios, including a zoo and roadways in different 
weather conditions for various purposes to verify the system capabilities, such as robustness, 
performance under occlusion, detection accuracy with different deer postures, etc. The test 
results have shown that this system can achieve high accuracy of deer detection with fast 
computation speed. When applied to roadsides, it will help to decrease the occurrence of DVCs. 
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Chapter 1. Introduction 

Deer-vehicle collisions occur when one or more deer collide with a vehicle on a roadway. It 
usually causes a great deal of property damages, human injuries and fatalities. The term “deer-
vehicle collision” is commonly annotated throughout safety agencies as DVC. Figure 1 and 
Figure 2 illustrate an example of DVCs and the likelihood of DVCs in the U.S., respectively. 
According to the statistics from National Highway Traffic Safety Administration [1], within the 
U.S., there are around 1.5 million DVCs annually which lead to 200 human fatalities, cause more 
than 10,000 personal injuries, and result in about $1 billion in vehicle damages. 

  
Figure 1:  A deer collided with a car. Figure 2:  Likelihood of DVCs in the 

U.S. 

Table 1 lists the top 10 states with the most DVC accidents from 2010 to 2011 [2]. It shows that 
there are more DVC accidents in West Virginia than any other states. State and federal 
governments, insurance companies, and drivers spend an addition $3 billion in an effort to 
reduce and manage the increasing number of deer-vehicle collisions. These data justify the 
necessity of many attempts to avoid DVCs. 

Table 1:  Top 10 states for DVCs in 2010-2011. 

Rank State 
Likelihood 

Rank State 
Likelihoo
d 

1. 
West 
Virginia 

1/41.91 
6. 

Pennsylvani
a 

1/84.63 

2. Iowa 
1/67.09 

7. 
North 
Dakota 

1/91.11 

3. Michigan  1/70.36 8. Wisconsin 1/95.68 
4. South Dakota 1/75.81 9. Arkansas 1/99.24 
5. Montana 1/82.45 10. Minnesota 1/99.51 

Attentions have been paid to DVCs for decades. The statistic by Romin and Bissonette [3] shows 
a large number of DVCs happened from 1982 to 1991 and as high as 76,626 cases of DVCs were 
reported in Wisconsin between 1989 and 1990 as shown in Table 1 in Appendix.  
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Many works have been carried out on reducing DVCs as shown in Table 2 in Appendix. These 
works are usually categorized into passive and active approaches based on how they functioned 
to keep drivers safe. Passive methods, using fencing or ultrasonic warning whistles, are now 
proved to be impractical and inefficient. For cost and simplicity, the most frequently used 
technique is deer crossing signs method which is a technique trying to inform drivers the 
existence of deer in range. 

Active approaches for deer detection can be further grouped into ‘break-the-beam’ method 
(BTB) and ‘area-cover’ method. The key component in a BTB method is a beam which is 
formed by infrared light [4]. The blockage of the beam means there is an animal crossing the 
road, which results in the issuance of a warning signal.  The BTB methods have the following 
drawbacks: (1) An object exiting from the road to roadside also activates the warning system; (2) 
Any object big enough to block the beam activates the warning system; (3) It is not capable of 
detecting the existence of roadside deer which may jump onto the roadway, which leaves passing 
drivers do not have enough time to react.  

In an area-cover system, a camera, radar or an ultrasound system is used to detect the presence of 
deer. Once an object, such as a deer, is detected, a warning signal will be issued. Compared to a 
BTB method, it gives better accuracy and performs with more robustness in different scenarios. 
Examples of such applications are the systems in Box, Finland [5], Nugget Canyon, Wyoming, 
USA [6], Kootenay National Park, British Columbia, and Canada [7]. However, current existing 
cover systems still have drawbacks preventing them from being used widely in the world. As an 
example, the system shown in [7] was installed in May 2003 but removed in Oct. 2003 due to 
many problems encountered.  

The existing approaches can also be categorized into roadside technologies and on-vehicle 
technologies according to where the detecting systems are placed. Roadside technologies include 
methods that either deter or detect the deer to avoid crashes. Deterrence roadside technologies 
have been researched to keep deer away from approaching traffic. Some of these technologies 
include animal reflectors [8], roadside reflectors [9], natural habitat prevention (predator scent 
[10], removal of roadside vegetation [11]) and electronic mats [11]. Although this idea is good 
theoretically, it has met with various difficult challenges in application. In addition to being 
difficult to implement, most proved to be ineffective. Experience shows that rather than 
attempting to deter deer, it may be more effective to detect deer and alert drivers. Detection 
roadside technologies developed usually have flashing signs to alert the driver when a deer is 
detected as a threat in the vicinity. On-vehicle technologies also aim at either deterring or 
detecting deer to avoid collisions. On-vehicle deterrence technologies include whistles [13] and 
TH - High Intensity Discharge lighting systems [14]. However, neither the audible nor visible 
methods of deterrence proved effective in any studies. On the other hand, current on-vehicle 
detection technologies, including forward-collision sensors [15], ultrasonic sensors [16], and 
thermographic cameras [17]- [18] that give the driver a thermographic image of the road ahead, 
only detect deer or big animals down the road direct to the front of vehicles passively and 
unfortunately ignore ones on the side of the road. 

This research works used thermographic cameras to supervise the surroundings on highways. It 
belongs to active roadside detection technology. Compared to common optical cameras, 
thermographic cameras provide better performance in heavy fog and smoke. They function well 
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during day and night when there is little light. Through the mechanical design, the hardware 
system is also capable of working in rainy, snowy weather conditions. The system is also 
equipped with two step motors providing two degrees of freedom and making it possible to track 
deer when detected.  

The algorithm selected to detect deer is motivated by the Histogram of Oriented Gradients 
(HOG) algorithm, proposed by Navneet Dalal in 2006 [19]. Based on this HOG algorithm, a new 
Contour-Based HOG algorithm (CNT-HOG) was designed in this research, which not only 
significantly improved the speed of the algorithm to make it possible for real-time detection, but 
also provided better performance in terms of detection accuracy. Descriptors employed here is an 
R-HOG descriptor, which demonstrates the best performance among C-HOG, Bar HOG and 
Center-surrounded HOG. Contours in the image were found out based on grayscale differences. 
In an image grabbed by a thermographic camera, the grayscale difference reflects the difference 
of temperature. Taking this advantage, the image can be segmented into several regions 
according to grayscale values. Considering that deer are warm-blooded animals and reflect more 
heat than most of the surroundings, the contour finding function can find out regions in the 
image with relatively high possibilities of deer existence. Comparing to the original algorithm 
performing HOG calculation on the whole image, by only applying the detection framework 
within the Regions of interest (ROIs), this contour based algorithm significantly reduces the 
running time. After HOG feature vectors are obtained, they will be sent into the detection 
framework for deer Identification. The classifier employed in the framework is a linear Support 
Vector Machine (SVM) classifier which was proposed by Vapnik and Corinna in1995 [20]. 

A significant amount of studies about the HOG and SVM methods have been carried out for 
object detection such as pedestrian identification, traffic identification, and object tracking [23], 
[22], [23]. However, there is no research about using HOG to detect deer with thermographic 
imaging devices. The combination of thermographic cameras and CNT-HOG algorithm provides 
this research with numerous advantages compared to current existing methods. In terms of 
hardware, the employment of thermographic cameras makes the system capable of functioning in 
bad weather conditions such as night, thick smoke and heavy fog, rain, snow, where common 
optical cameras don’t perform well due to the lack of visibility. In terms of algorithm, this 
Contour Based HOG algorithm works in real-time detection and simultaneously provides high 
detection accuracy.  

Based on the identified deer in the thermographic images, a stereo thermographic camera system 
was designed to simulate the human eye system, and to estimate the distance from the deer to the 
camera. With the estimated distance, the function of showing the position of a deer on a road 
side LED map screen or in drivers’ GPS will be no more a dream.  

In the remainder of this report, Chapter 2 will talk about the literature review about HOG, SVM 
classifier and contour finding methods; Chapter 3 will show the details of the research 
methodology; Deer detection results and evaluation will be presented in Chapter 4; The on-road 
application of the system and its performance evaluation will be described in Chapter 5; The 
conclusion is drawn and future work is illustrated in Chapter 6. 
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Chapter 2. Literature Review 

This Chapter mainly concentrates on the review of the background knowledge including HOG 
algorithm, SVM classifier and contour finding methods. 

2.1 Thermographic Cameras 

The first thermographic camera was invented by a Hungarian physicist Kálmán Tihanyi for anti-
aircraft defense in Britain in 1929. Similar to the common optical cameras which form images 
using visible light, a thermographic camera or infrared (IR) camera is a device that forms image 
using infrared radiation [24]. Figure 3 shows the location of infrared energy among 
the electromagnetic spectrum. It encompasses radiation from Gamma rays to radio waves. A 
certain amount of black body radiation will be emitted in a positive correlation with its 
temperature. This radiation can be detected by a thermographic camera via a special detector like 
the way in which optical cameras do with visible light. Since thermographic cameras take 
infrared radiation instead of light to form images, it works even in total darkness. This makes it 
especially useful when applied in night vision, firefighting, astronomy and underground 
detection. It can also be installed on vehicles to aid drivers. To the application of transportation, 
the first successful attempt was the installation on a 2000 Cadillac DeVille. Some physiological 
activities, particularly responses, in human beings and other warm-blooded animals can also be 
monitored with thermographic imaging. 

 
Figure 3:  Electromagnetic spectrum diagram. 

Thermographic cameras are broadly divided into two types based on the detectors installed 
inside. One type is equipped with cooled infrared detectors. Cooled infrared cameras provide 
superior image quality compared to un-cooled ones, but the drawbacks are that cooling is power-



6 

hungry and time-consuming and that they are expensive both to produce and to run. Compared to 
cooled infrared cameras, un-cooled infrared cameras are smaller and less costly. However, their 
resolution and image quality tend to be lower than cooled ones. This is due to the difference in 
their fabrication processes which is limited by available technology. Figure 4 shows one of the 
applications of thermal imaging technology where a thermographic camera is installed in airports 
to detect human temperature as an indication of possible H1N1virus. 

 
Figure 4:  Example of the application of a thermographic camera. 

Thermal camera shows a visual picture of the temperature over a large area reflecting a clear 
temperature contrast. What is important to this research is that it can be used to measure or 
observe in areas inaccessible or hazardous for other methods and detect in dark areas as well as 
different environments with low visibility. 

2.2 Image Processing Algorithm 

In image processing, to realize object identification, detection, tracking, or classification task, 
many machine learning and pattern recognition algorithms can be employed. 

2.2.1 Machine Learning and Pattern Recognition 

Tom Mitchell has defined machine learning in reference [24]. Commonly used machine learning 
algorithms are categorized into supervised algorithms and unsupervised algorithms. Supervised 
algorithms, including back-propagation in artificial neural network [26], Bayesian statistics [27], 
decision trees [28], and support vector machine (SVM) [28], etc., focus on generating a function 
that can best match a given input to a desired output (label). Unsupervised algorithm refers to the 
problem of trying to find certain hidden structure in unlabeled data. Commonly used 
unsupervised algorithms are clustering [30], expectation-maximization [31], and some artificial 
neural network algorithms [31]. There are also hybrid algorithms using both labeled and 
unlabeled examples to generate an appropriate function or classifier.  

Pattern recognition accomplishes the task of assigning a label to a specified given input. The 
typical pattern recognition methods include classification, regression, parsing, and sequence 
labeling. Commonly used algorithms include particle filters [34], Kalman filters [35], Gaussian 
process regression [36] and principal component analysis (PCA) [37], etc.  
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The contour based HOG algorithm developed in this research is a supervised method, which is 
motivated mainly by the HOG algorithm proposed by Navneet Dalal [19]. In this algorithm, 
HOG descriptor was selected to represent the edge information of deer, and then employed in a 
multi-scale detection framework to realize classification and identification. The classifier applied 
in the detection framework is a linear Support Vector Machine. To improve the accuracy and 
speed up the algorithm for real-time detection, a contour finding function is added to search for 
regions of interest (ROIs) where deer are most likely to appear. The collection of the HOG 
features and the identification of deer are considered only within the ROIs. 

2.2.2 Histogram of Oriented Gradients (HOG) 

The basic idea of transferring the chaos numerical data that represents an object in a digital 
image to a convenient pattern for computer comprehension is to find out a good transform to 
reveal the characteristics of the objects. HOG is such a transform that generates a feature 
descriptor (HOG descriptor) to represent the pattern of the objects. This descriptor was first 
proposed by two researchers- Navneet Dalal and Bill Triggs- from the French National Institute 
for Research in Computer Science and Control (INRIA) [38]. It can be used in computer vision 
areas such as identification, classification or object detection.  

To form an HOG descriptor, the gradients of pixels are accumulated by its orientation into a 
histogram in a localized image area (cell). This is quite like edge orientation histograms and 
shape contexts. The difference is that after the formation of the local histogram, it will be further 
combined in a bigger area (block) and normalized in different overlapping blocks. The 
normalization improves its accuracy and resistance to illumination variance. The descriptor was 
first used in offline up-right people detection and later was expanded to do offline animal 
detection and vehicle detection.  

Histogram of Oriented Gradient descriptors were designed based on the idea that an object’s 
appearance or shape information can be well described by the intensity gradients or edge 
directions. To implement the HOG descriptors in an image, the image should be first divided into 
a dense grid of uniformly spaced connected regions, called cells. Within each cell, local shape 
and edge information is represented by forming a histogram of the gradient of each pixel. 
Histogram is encoded by each pixel’s gradient orientation. To improve its invariance to 
illumination or shadowing, an overlapping contrast-normalization is employed in a larger region 
of the image, called “block”. Thus, an HOG descriptor is generated for a block. Normalized 
descriptors will be combined into a long feature vector in an even larger area, called window. 

Compared with other frequently used descriptors in image processing such as Harr Wavelet [39], 
shape context [40], and PCA-SIFT [40], HOG descriptor has its own advantages [38]: First, the 
descriptor is obtained in cells. Hence, it provides a good invariance to the geometric and 
photometric transformations. Second, since an HOG descriptor is contrast-normalized in 
overlapping blocks, it has a better invariance to illumination or shading. Third, if the target 
object roughly keeps its posture, the movement of the target can be ignored. This makes it 
particularly suitable for object tracking. 
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Image Pre-Processing 

An image pre-processing includes the work for geometric correction, histogram stretch, 
normalization, smoothing, and other image enhancement technologies. The aim of an image pre-
processing is to increase the interpretability of the digital data and to facilitate the subsequent 
processes and to facilitate the image processing phase. Before collecting HOG descriptors in a 
given image, the image is first globally Gamma normalized (Power law compression, see 
following equation): r

out inV AV= . Gamma normalization is especially important in the case where 
displaying an image accurately on a computer screen is of concern. Images without gamma 
normalization may look either bleached out, or too dark. Gamma normalization enhances image 
quality in image contrast and its invariance to illumination. Since the way in which HOG 
descriptors are collected generates a good invariance to illumination or shading, instead of 
mandatory, gamma normalization can be optional in the image pre-processing phase in an HOG 
algorithm. 

Gradient Computation 

The first step in image processing phase in HOG algorithm is the gradient computation. 
Commonly used operators for gradient calculation in digital image processing are Sobel mask, 
Robert masks, 1-D mask, and Laplacian mask (see Table 2 for details). In Dalal and Triggs’s 
research [38], the preferable operator employed is the 1-D centered, point discrete derivative 
mask. According to their test, the performances tend to be poorer when more complex operators 
such as Sobel or Lplacian are employed. 
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Table 2:  Gradient computation operators. 

Sobel mask 

-1 -2 -1 -1 0 1 
0 0 0 -2 0 2 
1 2 1 -1 0 1 
Horizontal Vertical 

Roberts cross mask 

-1 0 0 -1 

0 1 1 0 

X-Dimension Y-Dimension 

1-D mask 

0 0 0 0 -1 0 
-1 0 1 0 0 0 
0 0 0 0 1 0 
Horizontal Vertical 

Laplacian mask 
(non-diagonal) 

0 1 0 0 -1 0 

1 -4 1 -1 4 -1 

0 1 0 0 -1 0 
Negative Positive 

Laplacian mask 
(diagonal) 

1 1 1 -1 -1 -1 

1 -8 1 -1 8 -1 

1 1 1 -1 -1 -1 

Negative Positive 

Orientation Binning 

Orientation binning is applied in cells. A cell is a region in which the previous calculated 
gradients of each pixel is voted into a histogram. A cell can be either rectangular or circular and 
consists of numerous of pixels in a connected region. Gradients within a cell are voted into 
histogram based on its orientation. In an “unsigned” case, bins spread evenly from 0 to 180 
degrees, while from 0 to 360 degrees in a “signed” case. Weights of these gradients are decided 
by their magnitudes or a certain function of their magnitudes such as square root. Experimental 
results from Dalal and Triggs’s research showed that magnitude itself is more preferable than its 
square or its square root, and a histogram with 9 bins gives the best performance on both human 
detection and deer detection. Taking aliasing into consideration, which happens at the image 
edge and the vibration of the image (a strong edge pixel in one cell may fall into a neighborhood 
in the next), a tri-linear interpolation, is applied to the histogram in a 3-D space when the weight 
of gradients is distributed into the pre-defined orientation bins. 
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Descriptor Blocks 

In order to account for the changes in illumination and contrast, the gradient strengths must be 
locally normalized, which requires grouping the cells together into larger, spatially connected 
blocks. The HOG descriptor is then a vector formed by combining the normalized cell 
histograms within the block regions. Commonly used blocks are rectangular R-HOG blocks and 
circular C-HOG blocks. As discovered in Dalal’s research [38], a block with 3 x 3 cells and each 
cell with 6x6 pixels performs best on detection accuracy. Compared with R-HOG block, C-HOG 
block defines cell into log-polar shape.  Figure 5 and Figure 6 illustrates the comparison between 
R-HOG and C-HOG. 

  
Figure 5:  R-HOG block (source from 

[38]). 
Figure 6:  C-HOG block (source from 

[38]). 

Block Normalization 

Blocks typically overlap, meaning that each cell contributes more than once to the final 
descriptor for a window. To improve the performance of HOG descriptor, it will be contrast-
normalized in overlapping areas. Dalal and Triggs’s research proved that a normalized block 
shows significantly improved performance over a non-normalized block. The reason is that in the 
local area where HOG is collected, the illumination variation and the difference in background-
foreground contrast may cause the gradient magnitude vary over a huge range. Contrast-
normalization helps to reduce the variation. Many normalization schemes can be employed, 
including L1-norm, L1-sqrt, L2-norm, and L2-Hys. Those for schemes are illustrated in Table 3. 

Table 3:  Block normalization scheme. 

L1-norm 1 1
1

vf
v e

=
+

 L2-norm 2 2
2

vf
v e

=
+

 

L1-sqrt 2 1
1

vf
v e

=
+

 L2-hys 
L2-norm followed by 
clipping and 
renormalizing 

In Table 3, v is the non-normalized vector containing all histograms in a given block, ||v||k is its k-
norm for k = 1,2 and e is some small constant (the exact value, hopefully, is unimportant). 
Experimental results showed that L1-norm has some drawback on reliable performance 
compared with other normalization schemes, and the other 3 normalization schemes provide 
almost the same performance.  
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2.2.3 Linear Support Vector Machine 

SVM classifier is a classification system with an optimal hyper-plane realizing the function of 
sorting input data into different categories. By feeding the data into the classifier, the hyper-plane 
will serve as a decision function and generate a bench mark for the input. Classification will be 
done according to the bench mark. It is a supervised learning method that used to analyze data 
and recognize patterns. 

Before applying SVM classifier in an HOG algorithm, an optimal hyper-plane needs to be 
trained. The training data set for a binary classifier contains 2 classes. By feeding the training 
data set into the learning phase of the classifier, an optimal hyper-plane will be obtained. There 
are cases that with the training data set, the obtained hyper-plane is non-linear. To train a linear 
classifier, a kernel function will be introduced. Most frequently used Kernel function is the 
Gaussian function. Other kernels include homogeneous polynomial kernel, inhomogeneous 
polynomial kernel, and hyperbolic tangent kernel. 

After the hyper-plane is obtained, a set of testing data can be sent into the classifier. It provides a 
bench mark as the output. The sign of the bench mark decides the class that the input belongs to. 

The mathematical SVM model is a multi-dimensional space in which an example is represented 
by a point in the space. The aim of a learning phase is to separate points belonging to different 
categories with a clear gap as wide as possible. The classification phase is a prediction of a new, 
class unknown example to a certain category based on which side of the gap it falls on in the 
space.  If training data D is a set of n points of the form  

( ) { }{ }
1

, , 1,1
nP

i i i i i
D x y x R y

=
= ∈ ∈ −  

where the yi is either 1 or −1, indicating the class to which the point xi belongs. Each xi is a p-
dimensional real vector. Any hyper-plane can be expressed by the following function: 

0b⋅ − =w x  

where · denotes the dot product and w and x, and b is the bias.  Figure 7 illustrates the math 
model of a linear SVM classifier. The goal is to find out a vector w to maximize 2/||w||, i.e. to 
minimum w. 

 
Figure 7:  SVM classifier hyper-plane. 

http://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
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As we also have to prevent data points from falling into the margin, we add the following 
constraint: for each  either 

1b⋅ − ≥w x for xi of the first class 

or 

1b⋅ − ≤ −w x for xi of the second class 

Once trained on images containing some particular object, the SVM classifier can make 
decisions regarding the presence of an object, such as a human being, in additional test images.  

2.2.4 Contour Finding 

Contour finding methods are used in the domain of image processing to locate the contour of a 
target.  They were mainly based on edge detection via edge linking. Early contour findings 
methods are applied by detecting object edges with Roberts, Sobel, and Canny detectors [47]. 
One drawback of earlier methods is that the contour found may not be continuous. To improve 
on this point, in 1987, Michael Kass, et al. suggested a “snakes” method to find contours [42]. 
This method proved to be flexible for many image processing problems [43] and it sparkled 
several researches at that time. Based on this snake model, the balloon model [48] and greedy 
snake model [49] were developed. 
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Chapter 3. Deer Detection Methodology 

3.1 Thermal EyeTM Thermographic Camera 

Thermographic camera applied in this research is a Thermal Eye 3620AS provided by Thermal 
EyeTM Company as shown in Figure 8. The Thermal-Eye 3620AS is a camera core with best-in-
class power consumption. This camera core utilizes Amorphous Silicon Microbolometer detector 
technology (30-micron 160x120 pixel array). It has been utilized in security, military, public 
safety and other applications. This thermal camera has the following features and advantages 
[50]: (1) Small size and best-in-class power consumption at 2.4 watts; (2) Advanced image 
processing for best-in-class image quality at all times; (3) Flexible with sophisticated GUIs for 
OEM customization; and (4) Seal-ready optics housing and optics assemblies for easy OEM 
integration. More technical specifications can be found from [51]. 

 
Figure 8:  Thermal Eye 3620AS camera. 

3.2 System Setup 

Infrared images were collected with the equipment shown in Figure 9. The image acquisition 
system contains two thermalcameras which are designed to take video of the surroundings and to 
simulate human visual system to realize the function of distance measurement. Videos taken by 
the stereo camera system are grabbed using a Sensory S2255 image grabbing card [52] which 
connects the cameras and computer. It transfers data from the cameras to our computer. Image 
grabbing card S2255 connects cameras via two BNC wires and connects to computer using a 
single USB port. The stereo camera system is equipped with two stepper motors which provide 
two degrees of freedom: the yaw and pitch motions, making the camera capable of rotating both 
vertically and horizontally to track detected targets. The range of the yaw and pitch rotation is, 
relative to the front direction of the box, ±180° and ±45° individually. Those motors incorporate 
with a motion control card which connects to a computer through a serial port. Thus the 
computer is able to control the motion of the motor using a negative feedback system. The 
motors are designed to be driven by 110 volts AC power supply. The stereo camera system is 
powered by either AC power supply or 9 volts DC battery, which facilitates the outdoor test of 
the camera without AC power supply. Connection of components in this image acquisition 
system is illustrated in Figure 10. 



14 

 
Figure 9:  Image acquisition system. 

 
Figure 10:  Connection of components illustration. 

The frame grabber used to capture the video from the thermal camera is a Sensory 2255 image 
grabbing card. The card is able to acquire and capture frames from up to four video inputs, which 
means the ability of processing signals from up to 4 cameras simultaneously. The acquisition 
speed of the card can reach a maximum of 30 fps, which guaranties the fluency of the grabbed 
image flow. Captured images can be either colorful or monochrome, depending on users’ 
choices. 

3.3 Image Collection  

To create data sets for training and testing, in total 3 groups of deer images were collected. These 
images contain deer in winter, summer, in both sunny and cloudy days, on roads, vehicles, 
people and other animal influence. Collected images would be re-organized later to facilitate 
system performance test. 
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The first group of deer images was acquired in the Lake Superior Zoo in Duluth, Minnesota USA 
on January 20th, 2011. The outdoor temperature was -20°F and the distance from the camera to 
the deer was about 50m. A total of 3000 images were obtained with deer in different postures. 
Images in this group have a very strong contrast between deer and background and have very 
little inference from heated objects such as rocks, houses, vehicles, and human beings. Examples 
are shown in Figure 11 (a) to Figure 11 (f). 

On May 5, June 7 and 27, 2011, deer images collections were carried out again in the Lake 
Superior Zoo, mainly containing images with deer in all angles, in both sunny and cloudy day, 
and also deer under different percentage of occlusion. Example images with deer at different 
angles are shown in Figure 12 (a) to Figure 12 (b). Example images of occlusion are shown in 
Figure 13 (a) to Figure 13 (d). Comparison between a sunny day image and a cloudy day image 
are shown in Figure 14 (a) and Figure 14 (b). 

   
(a): Example 1 (b): Example 2 (c): Example 3 

   
(d): Example 4 (e): Example 5 (f): Example 6 

Figure 11:  Examples of the first group of deer images. 
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(a):  Example 1 (b):  Example 2 

  
(c):  Example 3 (d):  Example 4 

Figure 12:  Examples of deer in different angles. 

  
(a): Example 1 (b): Example 2 

  
(c): Example 3 (d): Example 4 

Figure 13:  Examples of the occlusion to deer’s body 



17 

  
(a): Image in sunny day (b): Image in cloudy day 

Figure 14:  Examples of deer in different sun conditions. 

   
(a): Multi deer (b): Vehicle (c): People 

Figure 15:  Images with different objects on road. 

The third time of image collection was carried out from March 8th to March15th, 2012. This 
group of images was collected to testify its on-roadside real-time detection performance. This 
data set includes images with only deer, images with only people, images with vehicles, images 
with single deer and images with multiple deer. These images contain many interference factors, 
such as people, buildings, vehicles, other animals, etc. Example images are shown in Figure 15. 

3.4 ROI Finding 

Contour finding plays an important role in image pre-processing phase in this research. Through 
the experiment, it was discovered that original HOG algorithm takes around 3.7s to process a 
single static image with size 640 by 480 pixels, and around 2.3s for 320 by 240 pixels. This 
speed is too slow compared to the image grabbing speed (up to 30 fps, i.e. 0.033s per image). 
Neither the output would be fluent for human to perceive. To carry out the algorithm in real-time 
detection task, Navneet Dalal proposed histogram of oriented flow and appearance algorithm. 
The drawback of this algorithm is that the speed up is at the cost of a fall in detection accuracy. 
This research aims at using infrared thermal imaging method to achieve real-time detection of 
the presence of deer in the surroundings. Since Navneet Dalal’s method uses a sliding window to 
scan the whole image, calculate the HOG descriptors, and then make decisions, processing time 
per image is mainly consumed in calculating massive HOG descriptors. The bigger the scan 
region is the more HOG descriptors it calculates, the longer it takes. Considering that calculating 
HOG descriptors in regions without deer generates no added value to the detection job and 
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sometimes even generates wrong detections, a smaller scan region will be more preferable. 
Motivated from this, the pre-processing phase of the original algorithm is modified by adding a 
contour finding function block. Results prove that it contributed a great part in balancing the 
speed and accuracy and made the algorithm capable of real-time detecting simultaneously. 

The first step of contour finding is to build an illumination filter. The image sent to computer for 
detection is in grayscale. As a property of thermal images, intensity of the image reflects 
temperature difference in the real world. Since deer are warm-blooded animals, their temperature 
tends to remain stable and will be different from most of the background. Hence, based on the 
gray scale property of the IR thermal images, if a grayscale value range of a deer can be found, 
most background information (lower temperature objects and extra high temperature ones) could 
be separated. Thus, regions with temperature lying in the range would be emphasized. Originated 
from this idea, attempts have been made to find out the upper boundary and lower boundary of 
the deer grayscale value in the image. Experimental results show that the boundary varies as the 
environment changes, due to the self-adjustment function of the camera itself. Hence, only a 
lower boundary, which is 165 throughout the experiment, was selected to filter out some 
background information. Once the computer reads an image in, the algorithm would first scan 
the whole image and automatically reset image by assigning pixels with grayscale value lower 
than the pre-defined threshold value (lower boundary of the range) to be zero. Thus, most of 
regions without deer are filtered out. This is called an illumination filter in this research, and it 
can be expressed by following function: 



 >

=
otherwise

thresholdxx
jif

,0
,

),(
 

After assigning the lower intensity pixels to 0 through the illumination filter, the raw image 
shown in Figure 17 (a) will be turned into the image shown in Figure 17 (b), with all contours of 
the bright region labeled by white rectangles. Contours were searched using their edge 
information.  In this stage, from this image it can be found that: 1.most parts of the image 
without a presentence of deer are filtered; 2.however, there are still bright regions without deer. 
To increase the algorithm speed, the algorithm is supposed to be carried out in an as small as 
possible potential region with the presence of deer. Hence, the problem left was to further filter 
out as many as possible portions in which there are no deer.  

 
Figure 16:  ROI finding flow chart. 
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(a): Raw image (b): Result after illumination filter with all 

contours found 

  
(c): Result after size filter (d): Regions of interest 

Figure 17:  Intermediate results of finding the ROIs. 

To filter out as many as possible portions without deer, a size filter was designed. Taking into 
consideration that the deer has greater chance of showing up in its side view, the training data set 
was collected consisting of mostly side-view deer and little front or rear view deer. Hence the 
algorithm is good at detecting side-view deer. Based on this point, to realize the size filter, two 
criteria were employed: (1) size of the contour, which restricts size of deer to be neither too big 
nor too small, and (2) ratio of width to height of a contour, which is designed to detect deer in a 
side view. Thus, some of the areas will be eliminated from the candidate pool (white rectangles 
shown in Figure 17 (b)). Rectangles those pass the size filter are further enlarged to regions of 
interest (ROIs) by expanding on each direction. Figure 17 (c) illustrates the output of the size 
filter. And based on Figure 17 (c), ROIs are obtained and shown in Figure 17 (d). Flow chart of 
contour finding is shown in Figure 16. 

As a drawback of the combination of sliding window technique and HOG descriptor, objects of 
small size could be neglected. In this research, some deer in distance within certain ROIs have 
high possibilities to be ignored due to its small size. To avoid the misdetection and increase the 
accuracy, those ROIs would be zoomed in as a new input to detect. This will be further 
introduced in multi-scale detection framework section. 
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3.5 Feature Vector Collection 

In this research, after the image pre-processing phase, four stages were used to calculate HOG 
features. Firstly, a Sobel mask was used to compute the gradients of each pixel. The gradient 
contains both magnitude and orientation information. They capture contour, silhouette and some 
texture information, while providing further resistance to illumination variations. Then, gradients 
of pixels were voted into a local 1-D histogram using its orientation information in a region 
called ‘cell’, which is composed of several connected pixels. The orientation is voted into a fixed 
number of pre-determined bins. Commonly used number is either 9 or 18, corresponding to [0°, 
180°] and [0°, 360°] separately. The weight of each gradient is decided by a function of its 
magnitude. In this research, the orientation was divided into 9 bins from 0° to 180° evenly, and 
the magnitude itself was chosen as the voting weight. These 1-D histograms formed the basic 
representation of the orientation histogram and were taken as the default set for descriptor 
throughout the whole experiment. The third stage was to combine and normalize those 
histograms, which introduces better invariance to illumination, shadowing, and edge contrast 
according to Navneet Dalal’s research [38]. Normalization was carried out in regions called 
“blocks” which is composed of several cells. It is performed by accumulating a measure of local 
histogram “energy” in the block. Thus, the normalization is block-dependent, and since each cell 
is shared between several blocks, a single cell histogram appears several times in the final 
descriptor of a window. This, as turned out in the result from Navneet Dalal, improved the 
performance. The normalization scheme chosen in this experiment was L-2 form. Finally, the 
HOG descriptors were collected from all blocks of a dense overlapping grid of blocks covering 
the detection window into a combined feature vector for further use in the classifier. In this 
research, default window size was 144 by 104 pixels. Within a window, each block contained 2 
by 2 cells while each cell was composed of 8 by 8 pixels. Hence, a feature vector of a given 
window is of size 1 by 6480. 

3.6 Support Vector Machine (SVM) 

Linear Support Vector Machine was employed in this research to generate a detector and then 
use it to classify given descriptors. Based on the functionality, an SVM classifier can be divided 
into two phases— training phase and classification phase. In the training phase, a training data 
set is taken as input and a detector will be provided as output. In the classification phase, a test 
data will be sent into the classifier to generate a bench mark based on which it will be 
categorized.  

In this research, to train the detector for classification, a training data set containing both positive 
and negative examples was collected first. Positive examples were created by selecting images 
with side-view deer and cropping out windows with deer located in the center. Those windows 
were then resized to be 144 by 104 in pixel, which is the same as defined before in feature vector 
collection. Negative examples were collected by randomly cropping out a window of size 144 by 
104 without deer in those training images. HOG feature vector calculation was applied to both of 
the data sets. Then, positive and negative examples together generated the initial training data 
set. By sending the training data set into the SVM classifier, processing each example in the 
training phase, an initial detector of size 1*6481 will be given.  
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According to many studies on SVM classifier, a better detector than the initial one can be 
achieved by its second training. This is performed by sending feature vectors for both images 
with and without deer into the classifier. False positives in the result of classification phase were 
collected and labeled as hard examples to update original negative examples. Thus, an updated 
training data set was established, the final detector was updated by sending the updated data set 
into the classification phase. 

3.7 Multi-Scale Detection Framework 

A multi-scale detection framework was designed in this research to detect deer of various sizes 
in an image. As shown in Figure 18, targets may spread in different locations and are of varying 
sizes. Navneet Dalal has tried to detect targets of different sizes by resizing the image iteratively 
and merging all the results from all iterations. This method not only helps to detect multi-scale 
deer, but also helps to eliminate some false positives and increase accuracy. In this research, 
some modifications were added to the original framework to improve its performance. After 
ROIs were obtained in the pre-processing phase, a separation would be applied based on the size 
of the ROI. Once the area of an ROI was less than 2500, it would be taken as a region where deer 
of very small size may exist. For such ROIs, they were resized by 3 times of its original size, and 
the original framework proposed by Navneet Dalal would be applied. For other ROIs, original 
framework would be directly employed. In the framework, a scale factor 1.05 was selected to 
resize the image iteratively for detection. Illustration for the algorithm is shown in Figure 19. 

 
Figure 18:  Deer with different size. 
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Figure 19:  Deer detection algorithm flow chart. 
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Chapter 4. Deer Detection Results and Evaluation 

To test the performance of the proposed system and algorithm, evaluations on many aspects have 
been carried out, including accuracy test, speed test, rotation and occlusion test, performance 
comparison between winter and summer, performance under different weather. Also, 
performance comparison between original HOG algorithm and the CNT-Hog algorithm will be 
shown in this Chapter. 

4.1 Data Set Setup 

To facilitate the research, all the images collected during the whole research period were re-
organized into the training data set and testing data set. To form the training data set, since 
images taken in winter tend to show a greater contrast between deer and non-deer objects than 
other groups, as shown in Figure 20, and greater contrast emphasizes deer edge, images selected 
to generate training data set were mainly from images collected in the Lake Superior Zoo in 2011 
winter. Considering that the negative examples from those images are monotonous only with 
trees and snow, additional examples generated from images collected in summer in the zoo and 
images collected on road, including people, buildings, vehicles, roads, and other animals were 
added. More examples of training data set are shown in Figure A1 in Appendix. From the 
training data set, 900 positive examples and 1200 negative ones were first generated. The 
number of hard examples generated by SVM classifier first training was 604 and they were 
further added into negative training data set for SVM classifier second training.  The SVM 
classifier selected is a linear SVM classifier, called LightSVM [53]. Positive examples and 
negative examples are shown in Figure A2 and Figure A3 in Appendix. 

Test data set was divided into 5 groups to give a full evaluation on the method performance in 
different scenarios. Group I is composed of image samples from all images collected in both 
winter and summer, in zoo and on road. It was created for general test on accuracy, algorithm 
speed, and comparison between different algorithms. Group II contains images in which deer are 
of different postures. This group was collected to test algorithm performance to rotation. Group 
III consists of images in which body of deer is partially blocked. This group of data would be 
later employed to give an evaluation on detection accuracy under occlusion. Group IV mainly 
includes images taken on road to show the algorithm’s ability in real-time on road detection. 
Images in Group V were taken both in winter and summer to show the algorithm and camera 
performance under different weather. Example images from each group of test data are shown in 
Figure A1 and Figure A4 to Figure A7 in Appendix A. 
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(a): example image 1 taken in winter (b): example image 2 taken in winter 

  
(c): example image taken in cloudy 

summer 
(d): example image taken in sunny summer 

Figure 20:  Example images from training data set. 

Figure 20 (a) to (d) show 4 example images served as SVM classifier training data. (a) and (b) 
were taken in winter, while (c) and (d) were taken in summer. As shown, it can be found out that 
image (a) and (b) has the best contrast between background and deer. Image (c) was taken in a 
cloudy summer day. Compared with image (d), which was taken in a hot sunny summer day, low 
temperature tends to give a better contrast. 

4.2 Intermediate Results in the Algorithm 

Gamma correction was applied as the first step in image pre-processing phase. Figure 21 shows 
the performance curve of gamma correction with different 𝛾 values. More gamma corrected 
images with different gamma value are shown in Figure A8 in Appendix. Taking image shown in 
Figure 22 as an example, Figure 23 shows the effect of gamma correction with γ = 0.5 while 
Figure 24 is the result when γ = 2.0. Figure 25 to Figure 27 show relative histograms. From those 
histogram figures it can be concluded that 𝛾 = 2.0 has the best contrast between background and 
deer. It makes the darker part of the image (background) even darker and thus stretched the 
histogram distribution, making it much easier to separate deer and background.  
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Figure 21:  Plots of Gamma correction curves with different 𝜸 values. 

   
Figure 22:  Gamma=1.0 

(Original). 
Figure 23:  Gamma=0.5. Figure 24:  Gamma=2.0. 

   
Figure 25:  Histogram for 
Gamma=1.0 (Original). 

Figure 26:  Histogram for 
Gamma= 0.5. 

Figure 27:  Histogram for 
Gamma=2.0. 

Gamma corrected image with 𝛾 = 2.0 was sent to the illumination filter to filter out useless 
background information. An example of the output image of the filter is shown in Figure 29. 
After this step, useful information (deer existence) only lies in regions labeled with white 
rectangles as shown in Figure 30. White rectangles in Figure 30 represent all contours found 
based on Figure 29. The output of illumination filter was then sent to size filter where further 
selection of regions where deer might exist would be carried out. Result is shown as Blue 
rectangle in Figure 31. Then the blue rectangle will be resized and cropped out to serve as an 
ROI image, shown in Figure 32. Compared with the result after illumination filter, most regions 
without deer were filtered out. Regions left in Figure 31 were then enlarged on each direction to 
generate corresponding ROIs as shown in Figure 32. As long as ROIs of an image were obtained, 
detection would be carried out only within them. Until now, the pre-processing phase of the 
algorithm is finished. In the processing phase, the detection frame work was applied to ROIs 
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only. Detection results was first obtained in each ROI image, and then combined into the original 
image. Detection results are shown in Figure 28. The red rectangle labels out the detected deer. 
The Blue one shows the contour that passed the size filter, which is identical to that in Figure 31. 
The green rectangle is the ROI in this image which is obtained based on the blue rectangle. 

 
Figure 28:  Final detection result. 

During this image pre-processing phase, deer may be separated into several different regions due 
to the illumination change on its body surface. This affects the performance of the algorithm by 
generating different detection results on the same objects since different ROIs would be 
introduced from the white rectangle or by missing the detection since the deer was divided into 
parts that are so small that would be further filtered out through seize filter in next step. Figure 
34 to Figure 37 illustrates an example of this. Figure 34 shows the original image. Figure 36 
illustrates the result after illumination filter and size filter. Figure 35 is the ROI generated from 
the top blue rectangle in Figure 36 while Figure 37 is generated from the bottom one. Figure 33 
is the detection results. The same deer is identified twice in two different ROIs.  

  
Figure 29:  Image after the illumination 

filter. 
Figure 30:  All contours found. 
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Figure 31:  Image after the size filter. Figure 32:  Region of interest. 

 
Figure 33:  Detection result. 
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Figure 34:  Original image. Figure 35:  Region of interest 1. 

  
Figure 36:  Image after the size filter. Figure 37:  Region of interest 2. 

4.3 Speed and Accuracy Tests 

This test was carried out with test data set Group I. The data set contains images with deer in 
different postures under different weather conditions, and images without deer but consist of 
many non-deer objects that may affect the detection, such as humans, animals, cars, bicycles, 
buildings. There are also images in this group containing multiple deer of various sizes.  

4.3.1 Speed Test 

The computation speed of the algorithm varies with different numbers of ROIs. Generally 
speaking, to process an ROI with size around 160 by 120 pixels usually takes less than 0.05s. 
Although the number of ROIs differs and the size of ROIs may change, by running the algorithm 
to process 1500 images of size 320 by 240 pixels, the time consumed was found to be 251s in 
total, i.e. 0.167s/image, meaning the average computation speed reached 5.988fps. 

4.3.2 Accuracy Test 

The following equation was employed to test the accuracy of the proposed algorithm: 
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where N is the total number of the targets in images, n1 is the number of the detected non-deer 
objects and n2 is the number of deer where misidentifications happen. Among 1500 images in 
this Group I of test data, there were 54 deer that were not detected and 32 non-deer objects that 
were misidentified as deer. The total number of deer was 1473. One thing to note here would be 
that, multi-detection results on one single deer introduced by different ROIs covering the same 
deer are counted as only one correct detection result. This results in an accuracy of 94.16% from 
the testing set of only deer that were side-on to the system. By further analyzing those images, it 
is found that most of wrong identified objects are big heated rocks on the ground or buildings 
that look like deer body without legs as shown in Figure 38. There were also some other (less 
than 5) false-positives generated by an object within which a darker area looks much like a deer 
instead of a brighter area. This shows that the HOG descriptor has the adaptability to a contrast-
conversed feature. The reason is that during forming the HOG descriptor, the orientation range 
was set to [0°, 180°] rather than [0°, 360°]. An example is shown in Figure 39.  It was also 
noticed that, most of the misdetection were introduced by occlusion and rotation of body angle 
since the training data set to generate the detector for SVM classifier  were mainly formed by 
side view deer images without occlusion. 

  
Figure 38:  Example 1 of 

misidentification. 
Figure 39:  Example 2 of 

misidentification. 

4.4 Body Angle and Occlusion Tests 

It is observed in accuracy tests that when deer postures were at certain angle with respective to 
the camera and/or when part of the body of deer was behind a tree, i.e. blocked from the camera 
view, they are harder to detect. Test data sets Group II and Group III were then employed to 
further evaluate the performance of the algorithm when deer body is at different angles and part 
of the body is occluded. 

4.4.1 Body Angle Test 

To test the detailed accuracy in different rotation angles, a series of detections were carried out 
on images with deer at different angles. Noted is that since most of the positive training samples 
were side view deer, the detector trained in the SVM classifier was good for the detection of side 
view deer.  
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In this research, right-head side view of a deer is defined as 0°, back view as 90°, left-head side 
view as 180° and front view as 270°. Figure 40 shows some of the results at different angles. By 
running detection in the Group II, it was found that when the angle of the deer falls in the range 
of [70°, 110°] and [250°, 290°] (estimated values), deer tended to be difficult to detect.  More 
examples are shown in Figure A10 in Appendix. 

This, however, can be improved in future work. Once training samples with deer posture angles 
falling in the range of [70°, 110°] and [250°, 290°] are added to the SVM classifier training 
phase and a new classification category was created for front-rear-view deer, the algorithm 
would have the capability to detect these deer. 

  
(a): Deer detected at 115° (b): Deer detected at 110° 

  
(c): Deer detected at 90° (d): Deer detected at 0° 

Figure 40:  Deer detection performance at different body angle. 

4.4.2 Occlusion Test 

It is a common scenario in image processing that part of the body of an object is behind certain 
obstacle. This made occlusion a common difficulty to deal with in many object detection and 
tracking tasks. Difficulty increases as the body shown percentage decreases. Body shown 
percentage means the percentage of the target object shown in the images relative to its whole 
body in one posture. It equals to 100 percentages minus occlusion percentage. Deer can be easily 
blocked by obstacles such as trees, rocks, buildings, or vehicles. In such cases, only part of the 
deer’s body is shown. 
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To evaluate algorithm performance to occlusion, a total of 700 images with different deer body 
shown percentage from Group III have been selected. The tests were performed in several 
scenarios with different parts of the deer body occluded. A series of results are shown in Figure 
A9 in Appendix. 

  
(a): More front body left (b): Less front body left 

  
(c): More rear body left (d): Less rear body left 

Figure 41:  Deer detection performance with various occlusion percentages. 

It is observed that the occlusion of the head and the front part of a deer influence detection 
accuracy much greater than the occlusion of the rear part of the body. As shown in Figure 41, if 
the head and the front body are not covered, the deer can be easily detected. On the other hand, 
without the information of the front of deer, the identification accuracy will drop. Noted is that if 
the deer bodies are in perfect side view posture (0° or 180°), the identification rate can reach 
100%. In Figure 41, blue rectangles are the ROIs detected while red rectangles represent the 
detection results. In Figure 41 (b), in total 3 ROIs were found, among which 2 of them contains 
no deer and one contains deer head. In the ROI with deer head, if a special detector can be 
trained for the detection of deer head, possibly the deer can be identified. Following Table 4 
shows the detailed results of performance results to occlusion. Figure 42 provides the 
performance curve to occlusion percentage. 
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Table 4:  Table of detection accuracy to different occlusion percentage. 

 Occlusion Percentage Accuracy 

Front body 

0 100 
10 92.0 
20 84.0 
25 80.0 
30 74.0 
35 55.0 
40 42.0 

Rear body 

0 100 
10 96.0 
20 92.0 
25 88.0 
30 82.0 
35 68.0 
40 46.0 

4.5 System Capability Test 

To test the capability of the camera, the algorithm was applied on Group V of the test data set.  
Group V contains different images taken both in winter and summer, daytime and night time. 
Following Figure 43 shows a comparison example between winter and summer, while Figure 44 
shows the difference between images taken during sunny summer day and cloudy summer day. 
Result shows that images in winter provides stronger contrast between deer and background, 
which saves a lot of time in running the detection and helps in increasing the detection accuracy. 
Images taken in a sunny summer day contains many bright dots in the background and many 
black dots on deer body, and the deer in the image didn’t show as much difference as it is in the 
images taken in cloudy summer day. One reason was that the environment temperature in a 
sunny summer is higher and the sunshine is stronger. Another reason is the self-adjustment 
function embedded in the thermal camera itself. The camera was designed with this function to 
provide a better reflection of the heat distribution in the image and protect the camera core, but 
results turned out that it killed the contrast between deer and background. 
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Figure 42:  Detection accuracy to occlusion. 

O l i   

Table 5:  Algorithm performance comparison between winter and summer. 

 Winter Summer 
Detection accuracy 97.2% 89.3% 
Algorithm speed 7.33 fps 5.12 fps 

  
(a): Example image taken in winter (b): Example image taken in summer 

 

Figure 43:  Comparison between images taken in winter and summer. 

Although the illumination contrast in summer, especially on sunny summer days, was 
weaker than images taken in winter, the algorithm was still capable of detecting deer. 
Disadvantage of the low contrast is that it brought in many difficulties in image pre-
processing phase, especially in the contour finding process. The final ROI found here 
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tends to be of bigger size and amount.  The running time is thus increased a little bit 
while the detection accuracy is decreased. An example of detection results obtained using 
summer taken images is shown in Figure 45. A comparison of the algorithm performance 
between winter and summer was given in Table 5. Accuracy and speed was obtained by 
the same method used in accuracy and speed test section. 

  
(a): Example image taken in sunny summer 

day 
(b): Example image taken in cloudy 

summer day 

Figure 44:  Comparison between images taken in sunny and cloudy day. 

 
Figure 45:  Example of detection in summer day. 

The blue rectangle is the contour passed both illumination filter and size filter. Area within the 
green rectangle is the ROI. Red rectangle gives the detection result. 
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Chapter 5. On-Road Application 

To test the system performance in real-time application, a series of road tests have been carried 
out from March 8th to March15th, 2012. All the road tests were carried out at Old Howard Mill 
Rd Duluth MN, as shown in Figure 46. The camera system was setup as illustrated in Figure 47. 
The camera box was mounted on the top of a street light pole which is 6-inch tall. The 
surrounding in daytime is shown in Figure 48 (a). Figure 48 (b) shows the surrounding 
environment at night, where the drawback of optical camera can be easily observed. As a 
comparison, Figure 49 shows the effect of the thermographic used in this research. Since 
thermographic cameras capture the heat of an object, lacking of light doesn’t affect its 
functionality.  

  
Figure 46:  Road test location. Figure 47:  Camera system setup. 

  
(a): Image taken at day time (b): Image taken at night time 

Figure 48:  Images taken in day time and night time by an optical camera. 
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Figure 49:  Image taken by the thermographic camera at night. 

In the images captured on roadside, there are more heated objects such as houses, human, small 
animals, vehicles, etc. than those grabbed in the zoo. These heated objects will influence the 
detection accuracy. There are also more occlusions by houses and trees. The environment is 
more complicated than the zoo setup and it may result in lower detect accuracy as a result. 

Figure 51 shows a collection of frame samples from one of the road test videos. Frames 1 to 6 
illustrate the capability of detecting deer with various postures. Frames 7 to 10 demonstrate the 
influence of occlusion. Frames 11 and 12 show that the algorithm is not good at rear-view 
detections. Frame 13 is an example of multi detection results on one deer due to multi ROIs. 
Frame 14 shows that the system is capable of detecting multi deer in one frame. Frame 15 and 
frame 16 show the misdetection and wrong detection, respectively. 

By analyzing the detection results, the computation speed and detection accuracy were obtained 
and shown in Table 6. Noted is that the algorithm computation speed is the average speed over 
12 hours. Due to the fact that in most of the images, there are no deer and even no ROI, the speed 
is significantly improved from 5.988 fps to 22.403 fps. Also noted is that the detection accuracy 
is calculated the same way as expressed in Chapter 4. The decrease on the detection accuracy 
from 94.16% to 91.2% is due to more complicated environment such as more occlusions and 
more heated objects. 

From these results, it is also found that an up-right human body hardly affects the detection. But 
houses with light sending out from window occasionally were identified as deer.  Examples are 
shown in Figure 51 (a) to (d). It is also found that the vehicle doesn’t affect the deer detection as 
shown in Figure 52. 

Table 6:  Road test detection accuracy and algorithm speed. 

 Accuracy Speed 
On Road Application 91.2% 22.403 fps 
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Example frame 1 Example frame 2 Example frame 3 Example frame 4 

    
Example frame 5 Example frame 6 Example frame 7 Example frame 8 

    
Example frame 9 Example frame 10 Example frame 11 Example frame 12 

    
Example frame 13 Example frame 14 Example frame 15 Example frame 16 

Figure 50:  Deer images captured during road tests. 
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(a): Example 1 (b): Example 2 

  
(c): Example 3 (d): Example 4 

Figure 51:  Images with people and house captured during road tests. 

 
Figure 52:  Image with vehicles captured during road tests. 
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Chapter 6. Conclusion and Future Recommendations 

Thermal imaging has shown promising results in the identification of deer to help reduce  
accidents from deer-vehicle collisions. In this research, based on the traditional HOG descriptor 
and SVM classifier, a contour based HOG method has been developed for deer identification to 
present deer-vehicle collisions. From the testing results provided in this research, it can be 
concluded that this method has reduced the time for object identification and improved the 
detection accuracy compared with the traditional HOG method. Since the computation time on 
one image reaches 0.13s, on average, the method is suitable to be used in real-time deer tracking 
and identification. Road test results confirmed its good performance in on-road application. 

Compared with the Original HOG method using optical camera, this thermographic image-based 
CNT-HOG algorithm has the following advantages: 

1. Image grab ability in low-visibility environment: as a property of thermographic camera, 
it forms images using the heat it sensed. Hence, it has the ability to form a visible image 
in dark night, foggy, rainy, and snowy weather, which makes the system especially 
suitable for working in low-visibility area, while an optical camera does not. 

2. A balance between fast computation speed and high accuracy: Based on the same data set 
used in the accuracy tests section, a comparison between original HOG algorithm and 
CNT-HOG algorithm has been done. The computation speed improved to 5.988 frames 
per second (fps). In term of the detection accuracy, there was a 5.09 percentage-point 
improvement, from 89.07% to 94.16%. The contour finding and ROI selection in the 
image pre-processing contributed a lot. 

3. Stable on-road deer detection: Road test results showed that the detection system can 
reach a computation speed as high as 22.403 fps, which is supposed to be fast enough for 
a real-time detection task. Although there is a small decrease on the detection compared 
with that for the data collected in the Lake Superior Zoo, 91.2% is still a satisfying result 
considering so many occlusions and deer body rotations. 

Although the detection is speedy with high accuracy in both the road tests and zoo tests, there are 
still drawbacks that presents it for achieving better performance. These are listed below and 
corresponding future recommendations are given as a solution. 

1. As a drawback of the thermographic camera, the image grabbed is insufficiently clear 
compared with images grabbed by the optical camera. The image can easily be influenced 
by the environmental temperature since the camera has an embedded self-adjustment 
function. This problem can be solved by employing a better camera and de-function self-
adjustment. 

2. Wrong detection, Misdetection, and Multi-detections on one target: as shown in the 
results part, there are various detection faults introduced by all kinds of reasons. Wrong 
detections are mostly introduced by heated objects that look much like a  deer body 
without a head and legs. Since most heated objects tend to stay unchanged with their 
location, if detection results from consequent frames can be fused, these wrong detections 
can be filtered. Misdetections usually happen because of occlusion or rotation. 
Misdetections caused by occlusion can be avoid by introducing a part-based detection 
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framework, while those caused by rotation can be avoided by changing the SVM 
classifier into a three-class classifier by adding new training examples. Multi-detections 
on one deer usually happen when there are two or more ROI identified on one deer. This 
can be improved by a suitable fusion. 

Except for the drawbacks that can be improved, there are also extension functions that can be 
added to this system, such as stereo distance measurement functions, object location in Google 
map, multi-work stations communication, etc. 
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Table A1:  Change in deer mortality on highways by state during 1982-1991 as derived 
from a questionnaire survey of natural resource agencies in October 1992. 

State No. deer killed (year) 

 Lowest Year  Highest Year 
Alabama   no data   
Alaska 

 
51-77/year 

 Arizona 
 

no response 
 Arkansas  3,603 (1990)  

 
4,200(1989) 

California 
 

15,000/year 
 Colorado 5,202 (1983) 

 
7,296(1991) 

Connecticut 1,429(1982) 
 

2,423(1986) 
Delaware 103(1982) 

 
268(1991) 

Florida 
 

no data 
 Georgia 

 
50,000/year 

 Hawaii 
 

no response 
 Idaho 

 
no data 

 Illinois 2,797 (1982) 
 

15,560(1991) 
Indiana 2,858(1982) 

 
12,671(1991) 

Iowa 4,805(1982) 
 

9,248(1988) 
Kansas 2,492(1982) 

 
3536(1991) 

Kentucky 1,490(1982) 
 

4,677(1990) 
Louisiana 

 
1,500/year 

 Maine 2,000(1980’s) 
 

3,500(1990’s) 
Maryland 

 
no response 

 Massachusetts 
 

no data 
 Michigan 18,045(1982) 

 
44,374(1991) 

Minnesota 11,471(1982) 
 

16,280(1991) 
Mississippi 

 
no data 

 Missouri 1,261(1982) 
 

3,341(1991) 
Montana 

 
no response 

 Nebraska 1,261(1982) 
 

3,341(1991) 
Nevada 

 
no response 

 New Hampshire 455(1982) 
 

1,000(1990) 
New Jersey 455(1982) 

 
10,494(1986) 

New Mexico 
 

no data 
 New York 7,269(1984) 

 
10,978(1986) 

North Carolina 
 

5,000-
8,000/year 

 North Dakota 2,500(1980's) 
 

3,000(1990's) 
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Ohio 8,587(1982) 
 

20,215(1991) 
Oklahoma 450(1985) 

 
495(1983) 

Oregon 
 

no data 
 Pennsylvania 24,648(1983) 

 
43,002(1990) 

Rhode Island 
 

no response 
 South Carolina 840(1982) 

 
3,689(1991) 

South Dakota 2,166(1982) 
 

3,363(1991) 
Tennessee 

 
no response 

 Texas 
 

(19,000/year) 
 Utah 1,826(1980-81) 

 
5,502(1988-89) 

Vermont 1,105(1982-83) 
 

1,514(1990-91) 
Virginia 1,446(1982) 

 
3,427(1990) 

Washington 
 

no response 
 West Virginia 3,844(1985) 

 
9,515(1991) 

Wisconsin 28,878(1982-83) 
 

76,626(1989-90) 
Wyoming 987(1988) 

 
1,756(1982) 
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Table A2:  Techniques used to reduce deer mortality on highways in the United States as 
reported by natural resource agencies in an October 1992 survey. 

State 
Technique 

FC UO CS LS MR SR HL WW HA HZ PR 
Alabama 

  
X X 

      
X 

Alaska 
  

X 
     

X 
  Arizona no response 

Arkansas 
     

X 
     California 

 
X X 

  
X 

 
X X 

  Colorado X X X 
 

X X X X X X X 
Connecticut 

  
X 

       
X 

Delaware 
  

X 
        Florida no data 

Georgia 
  

X 
 

X 
  

X 
   Hawaii no response 

Idaho X X X X 
 

X 
     Illinois 

  
X 

 
X X 

 
X 

  
X 

Indiana 
  

X 
    

X 
  

X 
Iowa X 

 
X 

  
X 

   
X X 

Kansas 
  

X 
       

X 
Kentucky 

  
X 

  
X 

 
X 

  
X 

Louisiana 
  

X X 
       Maine 

  
X 

  
X 

     Maryland no response 
Massachusetts 

  
X X 

      
X 

Michigan 
  

X 
       

X 
Minnesota X X X 

 
X X 

 
X X 

  Mississippi 
  

X 
 

X X 
 

X 
  

X 
Missouri 

  
X 

 
X X 

 
X 

  
X 

Montana 
     

X 
 

X 
   Nebraska 

  
X 

 
X 

  
X 

  
X 

Nevada no response 
New 
Hampshire 

  
X 

        New Jersey 
 

X X 
  

X 
 

X 
  

X 
New Mexico 

  
X 

  
X 

     New York 
 

X X 
 

X X 
 

X 
   North Carolina 

  
X 

  
X 

    
X 

North Dakota X 
 

X 
 

X 
  

X 
  

X 
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Ohio 
  

X 
 

X 
  

X 
  

X 
Oklahoma 

  
X X 

       Oregon X 
 

X 
 

X X 
     Pennsylvania X 

 
X 

    
X 

  
X 

Rhode Island no response 
South Carolina 

  
X 

        South Dakota X X X 
  

X 
 

X 
  

X 
Tennessee no response 
Texas 

  
X 

        Utah X X X 
  

X 
 

X 
  

X 
Vermont 

  
X 

  
X 

    
X 

Virginia X 
 

X 
  

X 
 

X 
  

X 
Washington no response 
West Virginia X 

 
X X 

 
X 

 
X X 

  Wisconsin 
  

X 
  

X 
 

X X 
 

X 
Wyoming X X X X 

 
X X X 

 
X X 

Total 11 7 40 7 11 22 2 20 6 3 22 

FC=fencing, UO=underpasses or overpass, CS=deer crossing signs, LS=lower 
speed limit, MR=mirrors, SR=swareflex reflectors, HL=highway Lighting, 
WW=ultrasonic warning whistles, HA=habitat alteration, HZ=hazing, 
PR=public awareness programs.    X indicates use by state. 
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Example 1 Example 2 Example 3 Example 4 

    
Example 5 Example 6 Example 7 Example 8 

    
Example 9 Example 10 Example 11 Example 12 

    
Example 13 Example 14 Example 15 Example 16 

Figure A1:  Training data set examples (also can be used as testing data). 
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Example 1 Example 2 Example 3 Example 4 

    
Example 5 Example 6 Example 7 Example 8 

    
Example 9 Example 10 Example 11 Example 12 

    
Example 13 Example 14 Example 15 Example 16 

Figure A2:  Positive examples for SVM detector training 
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Example 1 Example 2 Example 3 Example 4 
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Figure A3: Negative examples for SVM detector training. 
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Figure A4:  Examples of testing data set Group II. 
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Figure A5:  Examples of testing data set Group III. 
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Figure A6:  Examples of testing data set Group IV. 
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Figure A7:  Examples of testing data set Group V. 
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Gamma=0.05 Gamma=0.15 Gamma=0.30 Gamma=0.50 

    
Gamma=0.65 Gamma=1.5 Gamma=2.0 Gamma=3.0 

    
Gamma=3.5 Gamma=5.0 Gamma=10.0 Gamma=20.0 

Figure A8:  Gamma corrected images. 
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Figure A9:  Deer detection under occlusion. 
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Figure A10:  Deer detection at multiple angles. 
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